Madrid

Madrid Sinewave

This implements the Even Better Sinewave indicator as described in the book Cycle Analysis for Traders by John F. Ehlers.
In the example I used 36 as the cycle to be analyzed and a second cycle with a shorter period, 9, the larger period tells where the dominant cycle is heading, and the faster cycle signals entry/exit points and reversals.

Скрипт с открытым кодом

В истинном духе TradingView автор этого скрипта опубликовал его с открытым исходным кодом, чтобы трейдеры могли понять, как он работает, и проверить на практике. Вы можете воспользоваться им бесплатно, но повторное использование этого кода в публикации регулируется Правилами поведения. Вы можете добавить этот скрипт в избранное и использовать его на графике.

Отказ от ответственности

Все виды контента, которые вы можете увидеть на TradingView, не являются финансовыми, инвестиционными, торговыми или любыми другими рекомендациями. Мы не предоставляем советы по покупке и продаже активов. Подробнее — в Условиях использования TradingView.

Хотите использовать этот скрипт на графике?
// Madrid : 09/Jun/2015 21:09 : Even Better Sinewave : 1.0
// This implements the Even Better Sinewave indicator 
// Ref. Cycle Analysis for Traders by John F. Ehlers.
//

study("Madrid Sinewave", shorttitle="MSineWave")
Duration = input(36)
src = close

OB = 0.85, OS = -0.85
PI = 3.14159265358979

deg2rad( deg ) =>
        deg*PI/180.0

lowerBand = input(9)
ssFilter( price, lowerBand ) =>
    angle = sqrt(2)*PI/lowerBand
    a1= exp(-angle)
    b1 = 2*a1*cos(angle)
    c2 = b1
    c3 = -a1*a1
    c1 = 1 - c2 -c3
    filt = c1*(price + nz(price[1]))/2 + c2*nz(filt[1]) + c3*nz(filt[2])


// HighPass filter cyclic components whose periods are shorter than Duration input
x = src
angle = deg2rad(360)/Duration
alpha1 = ( 1-sin(angle) ) / cos(angle)
HP = 0.5*(1+alpha1)*(x-x[1]) + alpha1*nz(HP[1],0)

// Smooth with a Super Smoother Filter
Filt = ssFilter( HP, lowerBand )

Wave = ( Filt + nz(Filt[1],0) + nz(Filt[2],0) ) / 3
Pwr = ( Filt*Filt + nz(Filt[1],0)* nz(Filt[1],0) +  nz(Filt[2],0)* nz(Filt[2],0) ) /3

// Normalize the Average Wave to Square Root of the Average Power
sineWave = Wave / sqrt(Pwr)

// Output
sineWaveColor = sineWave>OB?green
            :  sineWave<OS?red
            :  change(sineWave)>0?green
            :  red

plot( sineWave, color=sineWaveColor, linewidth=3 )
plot( sineWave, color=sineWaveColor, linewidth=1, style=histogram )

hline(0, color=silver, linestyle=dotted)