PINE LIBRARY

FunctionMatrixCovariance

Library "FunctionMatrixCovariance"
In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector.
Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions. As an example, the variation in a collection of random points in two-dimensional space cannot be characterized fully by a single number, nor would the variances in the `x` and `y` directions contain all of the necessary information; a `2 × 2` matrix would be necessary to fully characterize the two-dimensional variation.
Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself).
The covariance matrix of a random vector `X` is typically denoted by `Kxx`, `Σ` or `S`.
~wikipedia.

method cov(M, bias)
  Estimate Covariance matrix with provided data.
  Namespace types: matrix<float>
  Parameters:
    M (matrix<float>): `matrix<float>` Matrix with vectors in column order.
    bias (bool)
  Returns: Covariance matrix of provided vectors.

---
en.wikipedia.org/wiki/Covariance_matrix
numpy.org/doc/stable/reference/generated/numpy.cov.html
arrayscovariancefunctionMATHmatrixprobabilitystatisticsvariance

Библиотека Pine

В истинном духе TradingView автор опубликовал этот код Pine как библиотеку с открытым исходным кодом, чтобы другие программисты Pine из нашего сообщества могли им воспользоваться. Вы можете использовать эту библиотеку в приватных или других публикациях с открытым исходным кодом, но повторное использование этого кода в публикации регулируется Правилами поведения.

Отказ от ответственности