[Saga Trading] OBV Pro

[Saga Trading] OBV Pro is a statistically-normalized On-Balance Volume framework designed to transform traditional OBV into a structured, regime-aware participation model. This script is not a simple OBV with added labels.
It is built around three core principles:
- Adaptive OBV computation
- Statistical normalization & regime measurement
- Structured divergence qualification
What makes this different from classic OBV scripts?
Traditional OBV:
- Is cumulative and unbounded.
- Cannot be compared easily across assets or timeframes.
- Often produces noisy divergences without contextual filtering.
OBV Pro addresses these limitations through:
1) Multi-mode OBV engine
Instead of a single formula, OBV Pro includes four calculation modes:
- Classic OBV
- Weighted % Change (volume weighted by percentage displacement)
- Weighted Candle Body (volume weighted by directional body strength)
- CVD Proxy (Buy–Sell) (directional volume proxy based on candle structure)
This allows participation measurement to adapt to volatility structure rather than relying on a fixed cumulative model.
2) Statistical normalization framework
The core innovation is the transformation of OBV into a measurable regime variable:
- OBV is compared to its own moving average.
- The distance is expressed in standard deviations (σ).
- A dynamic visual zone reflects intensity based on σ distance.
Additionally, three display domains are available:
- Raw mode → structural participation bias.
- Z-Score mode → standardized OBV (mean-normalized).
- ROC mode → participation acceleration.
- Z-Score mode enables objective statistical reference levels (±1 / ±2 / ±3σ).
This makes OBV comparable across:
- Crypto
- Index
- Forex
- Commodities
- Stocks
3) Pivot-based divergence model (not candle-to-candle)
Divergences are calculated using:
- Confirmed price pivots.
- OBV sampled at the pivot bar itself.
- Optional RSI / Bollinger condition filters.
A composite Divergence Score (0–100) based on:
- σ displacement at pivot
- OBV slope impulse
- Regime alignment bonus
This scoring system is designed to reduce random divergence noise and prioritize structurally meaningful participation shifts.
4) Multi-timeframe regime alignment
Optional higher timeframe OBV alignment can be required before signals are validated.
This prevents lower timeframe divergences from triggering against higher timeframe participation structure.
5) Asset & timeframe adaptive presets
The script includes internal adaptive parameters based on:
- Asset category
- Timeframe structure
Users may override these manually, but the default system adapts smoothing and divergence lookback automatically.
Why this script is invite-only / closed-source ?
This script integrates:
- Adaptive OBV modeling
- Statistical σ-based regime detection
- Divergence scoring logic
- MTF regime gating
- Asset/timeframe adaptive presets
The value lies in the internal integration of these components into a coherent participation model. This is not a mashup of public scripts but a unified framework built around participation normalization and structured divergence qualification. This script is provided for analytical purposes only and does not constitute financial advice.
It Include :
- Core Engine
- Multi-mode OBV calculation
- Session reset options
- Auto MA type & length by asset/timeframe
- Manual override controls
- Regime Framework
- OBV vs OBV MA dynamic zone
- σ-based distance measurement
- Z-Score normalization
- ROC acceleration view
- Optional gradient visualization
- Divergence Model
- Pivot-confirmed divergences
- Hidden divergences
- RSI / Bollinger filters
- Divergence Score (0–100)
- Score-threshold alert gating
- Context Tools
- HTF OBV overlay
- Optional MTF alignment requirement
- OBV oscillator
- OBV momentum
- RSI of OBV
- OBV/Price correlation
- OBV rolling profile range
- Alerts
- OBV regime crossover
- Pivot divergences
- Z-Score extremes
- ROC thresholds
- Scored divergence alerts
How to use ?
A) Identify participation regime :
Use Raw mode + Dynamic Zone
OBV above MA → bullish participation bias
OBV below MA → bearish participation bias
Large σ distance → strong participation pressure
B) Detect statistical extremes :
Use Z-Score mode
±2σ → extended participation
±3σ → statistically extreme condition
Combine with price structure. Extremes do not automatically imply reversal.
C) Evaluate acceleration :
Use ROC mode
Helps identify: Participation expansion / Participation exhaustion
D) Trade divergences selectively :
Enable:
Pivot divergences
Filters (RSI / Bollinger)
Divergence Score
Higher score = stronger structural imbalance.
Optional: enable MTF alignment for stricter confirmation.
Скрипт с ограниченным доступом
Доступ к этому скрипту имеют только пользователи, одобренные автором. Вам необходимо запросить и получить разрешение на его использование. Обычно оно предоставляется после оплаты. Для получения подробной информации следуйте инструкциям автора ниже или свяжитесь напрямую с KevSagaT.
TradingView НЕ рекомендует оплачивать или использовать скрипт, если вы полностью не доверяете его автору и не понимаете, как он работает. Вы также можете найти бесплатные, открытые альтернативы в наших скриптах сообщества.
Инструкции от автора
Отказ от ответственности
Скрипт с ограниченным доступом
Доступ к этому скрипту имеют только пользователи, одобренные автором. Вам необходимо запросить и получить разрешение на его использование. Обычно оно предоставляется после оплаты. Для получения подробной информации следуйте инструкциям автора ниже или свяжитесь напрямую с KevSagaT.
TradingView НЕ рекомендует оплачивать или использовать скрипт, если вы полностью не доверяете его автору и не понимаете, как он работает. Вы также можете найти бесплатные, открытые альтернативы в наших скриптах сообщества.