OPEN-SOURCE SCRIPT

Boness 1964 Option Pricing Formula [Loxx]

1 725
Boness 1964 Option Pricing Formula [Loxx] is an options pricing model that pre-dates Black-Scholes-Merton. This model includes Analytical Greeks.

Boness (1964) assumed a lognormal asset price. Boness derives the following value for a call option:

c = SN(d1) - Xe^(rho * T)N(d2)

d1 = (log(S / X) + (rho + v^2 / 2) * T) / (v * T^0.5)

d2 = d1 - (v * T^0.5)


where rho is the expected rate of return to the asset.

Analytical Greeks
  • Delta Greeks: Delta, DDeltaDvol, Elasticity
  • Gamma Greeks: Gamma, GammaP, DGammaDvol, Speed
  • Vega Greeks: Vega , DVegaDvol/Vomma, VegaP
  • Theta Greeks: Theta
  • Probability Greeks: StrikeDelta, Risk Neutral Density, Rho Expected Rate of Return


Inputs
S = Stock price.
X = Strike price of option.
T = Time to expiration in years.
r = Expected Rate of Return
v = Volatility of the underlying asset price
cnd (x) = The cumulative normal distribution function
nd(x) = The standard normal density function
convertingToCCRate(r, cmp ) = Rate compounder

Things to know
  • Only works on the daily timeframe and for the current source price.
  • You can adjust the text size to fit the screen

Отказ от ответственности

Все виды контента, которые вы можете увидеть на TradingView, не являются финансовыми, инвестиционными, торговыми или любыми другими рекомендациями. Мы не предоставляем советы по покупке и продаже активов. Подробнее — в Условиях использования TradingView.